
Analysis of Secure Boot using Machine Owner Key
Technology

Annisa Ayu Pramesti - 13518085
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13518085@sted.stei.itb.ac.id

Abstract—Secure boot is a security standard to help make sure
that a device boots using only software that is trusted. When the
PC starts, the firmware checks the signature of each piece of boot
software, including UEFI firmware drivers, EFI applications, and
the operating system. Machine Owner Key is a technology that
can be used to sign a custom efi-software to be recognized as
secure by UEFI Secure Boot. The advantages of using MOK
technology is that users are able to create custom modules or
kernels to the system or install open source efi-software easily.
This study's aim is to experiment and analyze MOK secure boot
by making a custom kernel signed with MOK. The custom kernel
is made by creating a custom system call and tested in the system
after it has been signed with MOK technology. After the
experiment was conducted, this study analyzed the vulnerabilities
formed when the MOK is enabled.

Keywords—Machine Owner Key, system call, UEFI Secure

Boot.

I. INTRODUCTION
Secure boot is a technology intended to protect the integrity

of the boot process and runtime integrity of the system from
adversaries with external physical access to the device. When
Secure Boot is enabled, all kernel modules must be signed with
a private key and authenticated with the corresponding public
key. Secure Boot can be disabled, but a mandatory requirement
for changing its state is the physical presence of the user at the
computer. In a U.S. government cyber security advisory, the
National Security Agency and Federal Bureau of Investigation
warn of a previously undisclosed piece of Linux rootkit
malware called Drovorub and attribute the threat to malicious
actor APT28. Both of them stated that systems with kernel
versions of 3.7 or lower are susceptible to this malware due to
the absence of adequate kernel signing enforcement.

There was a lot of discussion about UEFI Secure Boot
regarding open source issues. An open source OS must get
signed to run on computers and that must be paid. This makes
the concept of open source less upheld because open source
software should be free. Thus, the Machine Owner Key
(MOK) concept can be used with a signed shim loader to
enable key management at the user/sysadmin level. Machine
Owner Key (MOK) Secure Boot is an alternative key
management system that allows a target to boot using loaders,
kernels, and other binaries signed with user-provided keys. It

uses an initial loader called a shim, which is an EFI executable
accepted and already signed by a key in the databases.
Nevertheless, there are some restrictions to MOK signed
kernels such as no direct access to IO port and memory. The
custom kernels are also not possible to load unsigned 3rd party
modules.

This study’s goal is to conduct an experiment using MOK
for secure boot and to analyze the security of the custom kernel
itself. In this research, we will create a kernel with a custom
system call and it will be signed using MOK.

II. UEFI SECURE BOOT
Secure boot is a technology introduced in 2013 to prevent

the execution of unsigned or untrusted program code such as
.efi programs, operating system boot loader, and additional
hardware firmware like video card and network adapter
OPROMs [1]. UEFI Secure Boot (SB) is a secure boot
mechanism for computers with UEFI firmware. It is designed
to protect a system against malicious code being loaded and
executed early in the boot process, before the operating system
has been loaded [2]. The assumption is that the attacker can get
code execution on the device as the user and as root, but does
not have access to the signing keys or the disk encryption key.
The goal is to prevent the attacker from exfiltrating data from
the device or making persistent changes to the system
configuration [3].

The key components of UEFI Secure boot are:
1) UEFI Image Signing. Secure Boot works using

cryptographic checksums and signatures. Each program that is
loaded by the firmware includes a signature and a checksum,
and before allowing execution the firmware will verify that the
program is trusted by validating the checksum and the
signature. When Secure Boot is enabled on a system, any
attempt to execute an untrusted program will not be allowed.
This stops unexpected / unauthorised code from running in the
UEFI environment. UEFI keys are stored in Secure Boot. The
following keys are defined by specification:

● Platform Key (PK). This is a root key, created for this
exact platform. PK Key Owner (usually hardware
manufacturer) can modify all other keys. This the top
level key in secure boot architecture. PK is self signed
i.e. PK is signed by its own private counterpart.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

● Key Exchange Key (KEK) – The KEK’s private
counterpart is used to sign db or dbx holding the list
of keys marked as secure or unsecure. The owner of
this key (usually OS vendor) can update db/dbx keys.
KEK is signed using PK’s private counterpart.

● db – These are the key types that are used to verify the
utility that is going to be loaded when the secure boot
is enabled on the system. All allowed certificates and
hashes are stored here (white list).

● dbx – These are anti-db keys i.e. dbx holds the key
sources and hashes that are blacklisted from being
secure or marked as malware. All forbidden
certificates and hashes are stored here (black list).

2) UEFI Authenticated Variable. It is Time-Based
Authenticated Write Access used to update Authenticated
variables like keys db. Updated variables also must be signed.
PK certification verifies PK/KEK update while KEK verifies
db/dbx update. Lastly, certdb verifies general authenticated
EFI variable updates.

3) UEFI Secure Update. This component is used to
authenticate firmware update images using digital signature
verification. In order to enable the Secure Boot mode on a
platform one should do the following: Enroll Platform Key
(PK) and other keys, if needed. Set value of SetupMode
variable to USER_MODE (stored in NVRAM). Adjust
SecureBootEnable variable (stored in NVRAM). UEFI
variables can be updated using the UEFI runtime service
SetVariable. UEFI provides write-protected service for
Authenticated variables, based on asymmetric key technology.
In order to update variable value, it should be signed with the
appropriate key. Disabling of Secure Boot, as well as
deploying new PK should be done only in users' physical
presence [4].

If UEFI image is not signed by a trusted key, and it’s hash is
not found in db, the image shall not be loaded. If bootloader
signature verification fails, the operating system shall not load.

In the chain of trust, entities are signed in such a way that
validation leads to “root of trust”. In the case of Secure Boot,
platform owner is considered as the root of trust and addition
of keys to keystore follows chain of trust. That is, no key can
be replaced unless signed by preceding key.

The chain of trust can be explained using the keys defined in
UEFI Secure Boot. PK is self signed, KEK is signed by PK
and db and dbx are signed by KEK. That means to change
anything in db or dbx, it should be signed by KEK’s private
key, to change KEK itself, it must be signed by PK’s private
key and to replace PK the new key should be signed by
previous PK’s private key. Generally replacing PK is done
using an empty key certificate signed by the previous platform
owner’s private key.

Lastly, UEFI Secure Boot is a security measure to protect
against malware during early system boot. UEFI Secure Boot
is not an attempt by Microsoft to lock Linux out of the PC
market. UEFI Secure Boot is also not meant to lock users out
of controlling their own systems. Users can enrol extra keys
into the system, allowing them to sign programs for their own
systems. Many SB-enabled systems also allow users to remove
the platform-provided keys altogether, forcing the firmware to

only trust user-signed binaries [2].
By customizing computer's Secure Boot keys offers several

advantages over these approaches:
1) Locking out threats from the standard keys. In theory,

Secure Boot should prevent malware from running. On the
other hand, it's always possible that an attacker could trick
Microsoft into signing malware. We can use Shim with the
default keys, the computer will remain vulnerable to these
threats, at least until they're discovered and the blacklist
database is updated.

2) Locking out threats from your distribution's keys. Similar
to the preceding, it's also possible that the distribution's keys
could be compromised, in which case an attacker could
distribute malware signed with the compromised keys.
Depending on the keys management, this vulnerability can be
greatly reduced but the greatest level of protection will require
extra effort.

3) Eliminating the need for MOKs. The Shim and PreLoader
tools both rely on Machine Owner Keys (MOKs), which are
similar to Secure Boot keys but easier to install. Because they
can be more easily installed, it's conceivable that they could be
more readily abused by social engineering or other means.
Eliminating MOKs may therefore slightly increase security,
particularly if there is a collection of desktop computers used
by other people.

4) Taking philosophical control. Relying on a third party's
keys strikes some people as being wrong. Partly this is because
of the preceding reasons, but some people object to the
dependency on a more philosophical level.

5) Testing and development.. This approach is to develop a
custom boot manager by testing a signed version of the
customized software in an environment that mimics a "stock"
computer. The process for signing binaries with Microsoft's
Secure Boot keys is tedious and time-consuming, though, so
the developer may need to set the computer up with
customized keys to sign the binaries. When the software works
as expected, the developer can send it to Microsoft to be
signed.

6) Enabling Secure Boot on systems without keys. Some
servers ship without Microsoft's Secure Boot keys installed.
Using Secure Boot with such a server requires adding keys as
described on this page. Note that Linux distributions for exotic
platforms, such as ARM64, do not currently (in mid-2018) ship
with signed Shim implementations, so the developer will need
to sign the boot loader (or add whatever public key matches the
private key used to sign the boot loader) and boot it directly.

7) Overcoming default boot-hogs. This one is admittedly
speculative. Some people have reported difficulty getting their
computers to boot anything but Windows by default; they can
boot to Linux temporarily, use efibootmgr to set Linux as the
default boot loader, but then find themselves booting back to
Windows because the firmware keeps setting Windows as the
default. If the Linux boot entry remains in place but is
"demoted," setting customized own boot keys might enable to
control this problem by removing Microsoft's key from the
regular Secure Boot list and adding it to your MOK list.
However, some computers hang upon encountering the first
Secure Boot error; and if the problem is caused by a computer

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

"forgetting" its entire boot list, this solution will do no good
whatsoever.

III. MACHINE OWNER KEY

A. Shim
Shim is a simple software package developed by a group of

Linux developers from various distros that is designed to work
as a first-stage bootloader on UEFI systems [2]. The main
purpose of the shim is to relocate and execute code from a
second-stage boot loader after it has been cryptographically
validated using user-provided keys. Once the second-stage
boot loader is running, it loads the Linux kernel, which in turn
triggers a cryptographic validation of the kernel image [5].
This allows Microsoft (or other potential firmware CA
providers) only to worry about signing the shim, and not all of
the other programs that distro vendors might want to support.

Shim then becomes the root of trust for all the other
distro-provided UEFI programs. It embeds a further
distro-specific CA key that is itself used for signing further
programs (e.g. Linux, GRUB, fwupdate). This allows for a
clean delegation of trust - the distros are then responsible for
signing the rest of their packages. Shim itself should ideally
not need to be updated very often, reducing the workload on
the central auditing and CA teams [2].

B. Machine Owner Key

MOK (Machine Owner Key) is about securing the boot
process by only allowing approved OS components and drivers
to run. The main idea is that only code which is signed is
allowed to run while loading the operating system (OS). Once
that is booted, the OS can take over responsibility for securing
the system from the BIOS.

The MOK system uses public key cryptography, which
means that the user can create a key pair, then sign, with
private/secret key, all components that are allowed to run. This
includes the GRUB boot loader itself. Then the BIOS uses the
corresponding public key to check signatures before running
the code.

Keys can be added and removed in the MOK list by the user,
entirely separate from the distro Certification Authority (CA)
key. The mokutil utility can be used to help manage the keys
here from Linux userland, but changes to the MOK keys may
only be confirmed directly from the console at boot time. This
removes the risk of userland malware potentially enrolling new
keys and therefore bypassing the entire point of Secure Boot.

IV. EXPERIMENT

A. Creating a custom kernel
In this research, a custom kernel will be made by making a

simple system call in a Linux system. The following steps are
compatible with the 5.3.18 version of the Linux kernel. The
system call increments a global integer by 1 and returns it.

1) Implement the system call.At the linux source, make a

folder to store the source code of the new system call. Below is
the code of the system call implemented in C with file name
mycall.c.

Algorithm 1 System call implementation
#include <linux/kernel.h> /* required */
#include <linux/module.h> /* for EXPORT_SYMBOL */
#include <linux/init.h> /* for init */

int mycall_global = 0;
EXPORT_SYMBOL(mycall_global); /* required to make it
global */

asmlinkage long sys_mycall(void) /* the system call */
{

printk("running sys_mycall\n");
mycall_global++;
return mycall_global;

}

void __init mycall_init(void) /* init mycall_global */
{

mycall_global = 0;
}

2) Add a makefile. To compile the source code, we have to
add a makefile and include the source code as built in. The
makefile is placed in the same folder as the source code.

We also have to edit the one in the root directory of linux

source. Add /mycall at the end of the line below.

3) Register the system call. From the source root folder, we

then go to arch/x86/entry/syscalls and add the custom system
call at the end of the file syscall_64.tbl.

We also have to add the system call at the end of

syscall_32.tbl.

4) Compile and install the kernel. In the source root folder,

we make a compile configuration file then compile the kernel.
After we compile the kernel, we can install the kernel to be
able to run it on the computer.

If the steps are completed successfully, there will be image
files in the bootloader directory.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

obj-y := mycall.o

core-y += kernel/ …

548 commonmycall sys_mycall

437 i386 mycall sys_mycall

E. Signing the custom kernel using MOK
After we made a custom kernel, it won't be able to be booted

because of the Secure Boot. As explained above, the Secure
Boot forbids unsigned modules as well as unsigned kernels to
be booted in the system to prevent malware.

To complete this experiment we have to sign the custom
kernel using Machine Owner Key. There are some required
utilities such as openssl to generate public and private keys,
mokutil to manually enroll the public key, and sbsign to sign
the custom kernel [7]. Below are the following steps to sign the
custom kernel.

1) Create signing keys. First we have to create a config file
to create the signing key and save the file with .cnf extension.

Using openssl, we then generate the public and private keys

in the format .der to be used by mokutil and .pem to be used by
sbsign [8].

2) Enroll MOK key. Using mokutil, we enroll the MOK key

to the shim installation by giving a password. After that, the
system has to be restarted to continue the enrolling process by
entering the password.

3) Sign the custom kernel. Using sbsign, we can sign the

kernel using the MOK key in the .pem format. The kernel is
signed and authorized by Secure Boot to be booted in the
system.

After all of the steps are finished, the kernel can be booted in

the system by updating the grub-config.

.

IV. TESTING
To determine the success of the experiment, here is the

source code used to test the system call in C.

Algorithm 2 System call testing
#include <stdio.h>
#include <unistd.h>
#include <linux/kernel.h>
#define __NR_mycall 549

int main(int argc, char *argv[])
{

while(1)
{

int ret;
ret = syscall(__NR_mycall);
printf("Return: %d\n", ret);
sleep(1);

}
return 0;

}

Below is the output after the code above is executed.

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

 HOME = .
RANDFILE = $ENV::HOME/.rnd
[req]
distinguished_name = req_distinguished_name
x509_extensions = v3
string_mask = utf8only
prompt = no

 [req_distinguished_name]
 countryName = <country code>
 stateOrProvinceName = <state>
 localityName = <city>
 0.organizationName = <organization>
 commonName = Secure Boot Signing Key
 emailAddress = <email>

 [v3]
 subjectKeyIdentifier = hash
 authorityKeyIdentifier = keyid:always,issuer
 basicConstraints = critical,CA:FALSE
 extendedKeyUsage = codeSigning,
1.3.6.1.4.1.311.10.3.6
 nsComment = "OpenSSL Generated
Certificate"

openssl req -config ./mokconfig.cnf \
 -new -x509 -newkey rsa:2048 \
 -nodes -days 36500 -outform DER \
 -keyout "MOK.priv" \
 -out "MOK.der"

openssl x509 -in MOK.der -inform DER -outform PEM -out
MOK.pem

sudo mokutil --import MOK.der

sudo sbsign --key MOK.priv
--cert MOK.pem
/boot/vmlinuz-5.3.18-generic
--output
/boot/vmlinuz-5.3.18-generic.signed

sudo cp /boot/initrd.img-5.3.18-generic{,.signed}

 sudo update-grub

Figure 1. Testing result of the system call

The system call that is made runs successfully because it
returns the value of a global variable in the kernel which is
always incremented

V. SECURITY ANALYSIS

Based on the experiment, we can conclude that the custom
kernel can run perfectly in the system even though it is signed
by a user-defined MOK key. By using Machine Owner Key
technology to sign the custom kernel, there are some risks or
vulnerabilities that possibly formed in the system.

There are 2 conditions that can trigger vulnerabilities in the
system. First is when the user is enabling MOK keys provided
by malware authors. This can be done by enrolling the keys
into the MOK database so it can be recognized in the system
and the UEFI firmware will treat the efi file as secure. Second
is when the MOK key is stolen. If in some conditions, a hacker
can have access to the system and get the MOK keys, the risks
triggered will be even greater. Below are possible risks of
enabling MOK to the Secure Boot.

1) Exploitation using third-party software. By enabling
MOK, any third-party efi-software that is signed using MOK
key can be run in the system and will be recognized as secure
by UEFI secure boot. Anyone with access to MOK utils can
also register their keys/hashes and mark their utilities as
secure. If the module is malicious, it can be used to exploit the
system.

2) Embedded third-party unauthorized MOK key. Hidden
embedding of a third-party unauthorized Machine Owner Key
into the system for subsequent running of any unauthorized
efi-software on the infected platform.

All of the vulnerabilities above can occur only if the hackers
or attackers have access to the MOK utility or if they can
create their public and private keys and register them to the
system. From the other side if the MOK key is stolen by an
attacker then it could be used to sign and boot any
efi-application. The problem is even worse because MOK–key
can be added to the MOK DB from the level of the operating
system (e.g. etc/secureboot in Ubuntu) and UEFI
Runtimeservices.

VI. CONCLUSION
Machine Owner Key is a technology that can be used to sign

a custom efi-software to be recognized as secure by UEFI
Secure Boot. The advantages of using MOK technology is that
users are able to create custom modules or kernels to the
system or install open source efi-software easily. However, by
enabling MOK, the system is also exposed to some threats. A
variety of platform manufacturers and drivers developers, each
of them implementing the specifications requirements on their
own, may result in vulnerabilities in particular UEFI
implementations. When the MOK access is stolen by attackers
or hackers such as exploitation using third-party software and
embedded third-party unauthorized MOK key.

VII. FUTURE RESEARCH

There are many researches that can be developed based on
this proposition such as creating a system above MOK system
to ensure authentication of the keys enrolled in the MOK
management system. We can also conduct research that
focuses on analyzing the threats deeper such as making an
attack simulation to the system and find a way to minimize the
effect of the attack.

VIII. ACKNOWLEDGMENT
The author would like to express her gratitude to God

Almighty for his guidance, to her parents for their eternal
support, love and education, and to Mr. Rinaldi Munir for his
teachings of Cryptography to complete this paper.

REFERENCES

[1] ValdikSS, “Exploiting signed bootloaders to circumvent
UEFI Secure Boot,” 2019. [Online]. Available:
https://habr.com/en/post/446238/. [Accessed:
19-Dec-2020].

[2] Debian, “SecureBoot,” 2020. [Online]. Available:
https://wiki.debian.org/SecureBoot. [Accessed:
19-Dec-2020].

[3] Safeboot, “Threat Model,” 2020. [Online]. Available:
https://safeboot.dev/threats/. [Accessed: 19-Dec-2020].

[4] V. Bashun, A. Sergeev, V. Minchenkov, and A. Yakovlev,
“Too young to be secure: Analysis of UEFI threats and
vulnerabilities,” Conf. Open Innov. Assoc. Fruct, no.
March 2015, pp. 16–24, 2013.

[5] windriver, “EFI Secure Boot Using Machine Owner
Keys,” 2019. [Online]. Available:
https://docs.windriver.com/bundle/Wind_River_Linux_Se
curity_Features_Guide_9_1/page/qii1503681802496.html.
[Accessed: 20-Dec-2020].

[6] D. Glover, “Signing a Linux Kernel for Secure Boot.”
[Online]. Available:
https://gloveboxes.github.io/Ubuntu-for-Azure-Developers
/docs/signing-kernel-for-secure-boot.html. [Accessed:
20-Dec-2020].

[7] R. Hat, “CHAPTER 3. MANAGING KERNEL
MODULES,” 2020. [Online]. Available:
https://access.redhat.com/documentation/en-us/red_hat_en
terprise_linux/8/html/managing_monitoring_and_updating
_the_kernel/managing-kernel-modules_managing-monitor
ing-and-updating-the-kernel#signing-kernel-modules-for-s
ecure-boot_managing-kernel-modules. [Accessed:
20-Dec-2020].

[8] R. Smith, “Managing EFI Boot Loaders for Linux:
Controlling Secure Boot,” 2018. [Online]. Available:
https://www.rodsbooks.com/efi-bootloaders/controlling-sb
.html. [Accessed: 21-Dec-2020].

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2020

Annisa Ayu Pramesti

13518085

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

